Perception of obstacles remains a critical safety concern for autonomous vehicles. Real-world collisions have shown that the autonomy faults leading to fatal collisions originate from obstacle existence detection. Open source autonomous driving implementations show a perception pipeline with complex interdependent Deep Neural Networks. These networks are not fully verifiable, making them unsuitable for safety-critical tasks. In this work, we present a safety verification of an existing LiDAR based classical obstacle detection algorithm. We establish strict bounds on the capabilities of this obstacle detection algorithm. Given safety standards, such bounds allow for determining LiDAR sensor properties that would reliably satisfy the standards. Such analysis has as yet been unattainable for neural network based perception systems. We provide a rigorous analysis of the obstacle detection system with empirical results based on real-world sensor data.
翻译:现实世界碰撞表明,导致致命碰撞的自主缺陷源于发现存在障碍; 开放源码自主驱动实施显示有复杂、相互依存的深神经网络的感知管道。 这些网络不完全可以核查,因此不适于执行安全关键任务; 在这项工作中,我们对现有基于LIDAR的经典障碍探测算法进行安全核查; 我们对这种障碍检测算法的能力规定了严格的限制。 根据安全标准,这种界限允许确定可可靠地满足标准的LIDAR传感器特性。 这种分析对于基于神经网络的感知系统来说,至今还无法进行。 我们根据真实世界感官数据对障碍检测系统进行严格分析,并得出实证结果。