With the rapid development of mobile Internet and big data, a huge amount of data is generated in the network, but the data that users are really interested in a very small portion. To extract the information that users are interested in from the huge amount of data, the information overload problem needs to be solved. In the era of mobile internet, the user's characteristics and other information should be combined in the massive amount of data to quickly and accurately recommend content to the user, as far as possible to meet the user's personalized needs. Therefore, there is an urgent need to realize high-speed and effective retrieval in tens of thousands of micro-videos. Video data content contains complex meanings, and there are intrinsic connections between video data. For multimodal information, subspace coding learning is introduced to build a coding network from public potential representations to multimodal feature information, taking into account the consistency and complementarity of information under each modality to obtain a public representation of the complete eigenvalue. An end-to-end reordering model based on deep learning and attention mechanism, called interest-related product similarity model based on multimodal data, is proposed for providing top-N recommendations. The multimodal feature learning module, interest-related network module and product similarity recommendation module together form the new model.By conducting extensive experiments on publicly accessible datasets, the results demonstrate the state-of-the-art performance of our proposed algorithm and its effectiveness.


翻译:随着移动互联网和大数据的迅速发展,网络中产生了大量数据,但用户真正感兴趣的数据只有极小部分。为了从大量数据中提取用户感兴趣的信息,需要解决信息超载问题。在移动互联网时代,用户的特点和其他信息应结合大量数据,以便尽可能迅速准确地向用户推荐内容,从而满足用户的个人需要。因此,迫切需要在成千上万个微型视频中实现高速和有效的检索。视频数据内容包含复杂的含义,视频数据之间也有内在联系。关于多式联运信息,引入子空间编码学习,以从公共潜在表述到多式联运特征信息的编码网络,同时考虑到每种模式下的信息的一致性和互补性,以获得完整的电子价值的公共代表。基于深层次学习和关注机制的端对端重新排序模型,呼吁基于多式联运数据的与利益有关的产品相似模型,以提供最先进的图像数据数据数据数据数据数据数据,同时展示其最上可获取的业绩模型。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员