Machine learning models often use spurious patterns such as "relying on the presence of a person to detect a tennis racket," which do not generalize. In this work, we present an end-to-end pipeline for identifying and mitigating spurious patterns for image classifiers. We start by finding patterns such as "the model's prediction for tennis racket changes 63% of the time if we hide the people." Then, if a pattern is spurious, we mitigate it via a novel form of data augmentation. We demonstrate that this approach identifies a diverse set of spurious patterns and that it mitigates them by producing a model that is both more accurate on a distribution where the spurious pattern is not helpful and more robust to distribution shift.
翻译:机器学习模型经常使用假想的模式, 比如“ 依靠一个人的存在来检测网球拍子”, 而这种模式并不笼统。 在这项工作中, 我们展示了一个终端到终端的管道, 用来识别和减轻图像分类者的虚假模式。 我们从找到“ 模型对网球拍子的预测会改变63%的时间, 如果我们隐藏人们 ” 的模式开始。 然后, 如果一个模式是虚假的, 我们通过一种新型的数据增强形式来减轻它。 我们证明这个方法可以识别出一套多种多样的虚假模式, 并且通过制作一个模型来减轻这些模式, 该模型在虚假模式对分布转移没有帮助和力度的分布上更加准确。