Neural Radiance Fields (NeRFs) have made great success in representing complex 3D scenes with high-resolution details and efficient memory. Nevertheless, current NeRF-based pose estimators have no initial pose prediction and are prone to local optima during optimization. In this paper, we present LATITUDE: Global Localization with Truncated Dynamic Low-pass Filter, which introduces a two-stage localization mechanism in city-scale NeRF. In place recognition stage, we train a regressor through images generated from trained NeRFs, which provides an initial value for global localization. In pose optimization stage, we minimize the residual between the observed image and rendered image by directly optimizing the pose on tangent plane. To avoid convergence to local optimum, we introduce a Truncated Dynamic Low-pass Filter (TDLF) for coarse-to-fine pose registration. We evaluate our method on both synthetic and real-world data and show its potential applications for high-precision navigation in large-scale city scenes. Codes and data will be publicly available at https://github.com/jike5/LATITUDE.
翻译:以高分辨率细节和高效内存为代表复杂的三维场景的神经辐射场取得了巨大成功,然而,目前以 NeRF 为基础的表面测深仪没有初步的预测,在优化期间容易出现局部偏差。本文介绍LATUDDE:全球本地化,并配有快速动态低通路过滤器,在城市规模的NERF中引入一个两阶段定位机制。在承认阶段,我们通过经过培训的内RF 生成的图像来培训一个递增器,为全球本地化提供初步价值。在最优化阶段,我们通过直接优化色平面的外观将观察到的图像之间的残存降到最低,并制作图像。为避免与当地最佳的趋同,我们推出一条分流的动态低通路过滤器(TDLF),用于粗向纤维的注册。我们评估了合成数据和现实世界数据的方法,并展示其在大型城市景区进行高精度导航的潜在应用。代码和数据将在https://github.com/jike5/LATITITU上公开提供。