Context-aware machine translation models are designed to leverage contextual information, but often fail to do so. As a result, they inaccurately disambiguate pronouns and polysemous words that require context for resolution. In this paper, we ask several questions: What contexts do human translators use to resolve ambiguous words? Are models paying large amounts of attention to the same context? What if we explicitly train them to do so? To answer these questions, we introduce SCAT (Supporting Context for Ambiguous Translations), a new English-French dataset comprising supporting context words for 14K translations that professional translators found useful for pronoun disambiguation. Using SCAT, we perform an in-depth analysis of the context used to disambiguate, examining positional and lexical characteristics of the supporting words. Furthermore, we measure the degree of alignment between the model's attention scores and the supporting context from SCAT, and apply a guided attention strategy to encourage agreement between the two.


翻译:符合环境的机器翻译模型旨在利用背景信息,但往往未能这样做。结果,它们错误地模糊了需要解决的背景问题的名词和多词词。在本文中,我们提出几个问题:人类翻译员用什么背景来解决模棱两可的词句?模型是否对同一背景给予了很大的关注?如果我们明确培训它们来这样做呢?为了回答这些问题,我们引入了SCAT(支持模糊翻译的背景),这是一个新的英文-法文数据集,由14K译文的支持语组成,专业翻译认为这14K译文对标语脱节有用。我们利用 SCAT,对用于淡化、检查支持词的位置和词汇特点的背景进行深入分析。此外,我们衡量模型的注意分数与SCAT的支持背景之间的一致程度,并采用指导关注策略鼓励双方达成一致。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
36+阅读 · 2020年3月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
从Seq2seq到Attention模型到Self Attention(二)
量化投资与机器学习
23+阅读 · 2018年10月9日
从Seq2seq到Attention模型到Self Attention(一)
量化投资与机器学习
76+阅读 · 2018年10月8日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
从2017年顶会论文看Attention Model
哈工大SCIR
9+阅读 · 2017年10月12日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
已删除
将门创投
6+阅读 · 2017年7月6日
Sparse Sequence-to-Sequence Models
Arxiv
5+阅读 · 2019年5月14日
Doubly Attentive Transformer Machine Translation
Arxiv
4+阅读 · 2018年7月30日
Arxiv
5+阅读 · 2018年5月28日
Arxiv
6+阅读 · 2018年2月28日
Arxiv
6+阅读 · 2018年2月26日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
36+阅读 · 2020年3月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
从Seq2seq到Attention模型到Self Attention(二)
量化投资与机器学习
23+阅读 · 2018年10月9日
从Seq2seq到Attention模型到Self Attention(一)
量化投资与机器学习
76+阅读 · 2018年10月8日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
从2017年顶会论文看Attention Model
哈工大SCIR
9+阅读 · 2017年10月12日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
已删除
将门创投
6+阅读 · 2017年7月6日
Top
微信扫码咨询专知VIP会员