We study the problem of finding the nearest $\Omega$-stable matrix to a certain matrix $A$, i.e., the nearest matrix with all its eigenvalues in a prescribed closed set $\Omega$. Distances are measured in the Frobenius norm. An important special case is finding the nearest Hurwitz or Schur stable matrix, which has applications in systems theory. We describe a reformulation of the task as an optimization problem on the Riemannian manifold of orthogonal (or unitary) matrices. The problem can then be solved using standard methods from the theory of Riemannian optimization. The resulting algorithm is remarkably fast on small-scale and medium-scale matrices, and returns directly a Schur factorization of the minimizer, sidestepping the numerical difficulties associated with eigenvalues with high multiplicity.


翻译:我们研究的是将最接近的美元/美元稳定矩阵找到到某个基数$/美元(即最接近的基数)的基数(美元)的问题,即以规定封闭的一套美元/美元(美元/美元)计算其所有元值的最接近的基数。在Frobenius规范中测得距离。一个重要的特例是找到最近的Hurwitz或Schur稳定矩阵,该矩阵在系统理论中具有应用性。我们把重拟任务描述为在Riemannian 方位(或单一)矩阵上的一个优化问题。然后可以使用里曼尼理论的标准方法解决该问题。由此产生的算法对中小型基数非常快,直接返回最小化的Schur系数,使与高倍增倍值相关的数字困难与高倍数相隔开。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年11月21日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
6+阅读 · 2019年11月21日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员