We study the problem of finding the nearest $\Omega$-stable matrix to a certain matrix $A$, i.e., the nearest matrix with all its eigenvalues in a prescribed closed set $\Omega$. Distances are measured in the Frobenius norm. An important special case is finding the nearest Hurwitz or Schur stable matrix, which has applications in systems theory. We describe a reformulation of the task as an optimization problem on the Riemannian manifold of orthogonal (or unitary) matrices. The problem can then be solved using standard methods from the theory of Riemannian optimization. The resulting algorithm is remarkably fast on small-scale and medium-scale matrices, and returns directly a Schur factorization of the minimizer, sidestepping the numerical difficulties associated with eigenvalues with high multiplicity.
翻译:我们研究的是将最接近的美元/美元稳定矩阵找到到某个基数$/美元(即最接近的基数)的基数(美元)的问题,即以规定封闭的一套美元/美元(美元/美元)计算其所有元值的最接近的基数。在Frobenius规范中测得距离。一个重要的特例是找到最近的Hurwitz或Schur稳定矩阵,该矩阵在系统理论中具有应用性。我们把重拟任务描述为在Riemannian 方位(或单一)矩阵上的一个优化问题。然后可以使用里曼尼理论的标准方法解决该问题。由此产生的算法对中小型基数非常快,直接返回最小化的Schur系数,使与高倍增倍值相关的数字困难与高倍数相隔开。