Traffic light detection is essential for self-driving cars to navigate safely in urban areas. Publicly available traffic light datasets are inadequate for the development of algorithms for detecting distant traffic lights that provide important navigation information. We introduce a novel benchmark traffic light dataset captured using a synchronized pair of narrow-angle and wide-angle cameras covering urban and semi-urban roads. We provide 1032 images for training and 813 synchronized image pairs for testing. Additionally, we provide synchronized video pairs for qualitative analysis. The dataset includes images of resolution 1920$\times$1080 covering 10 different classes. Furthermore, we propose a post-processing algorithm for combining outputs from the two cameras. Results show that our technique can strike a balance between speed and accuracy, compared to the conventional approach of using a single camera frame.
翻译:公用交通灯数据集不足以发展用于探测远处交通灯的算法,从而提供重要的导航信息。我们采用了一套新型的基准交通灯数据集,使用的是一对覆盖城市和半城市道路的窄角和宽角照相机同步拍摄;我们提供了1 032张用于培训的图像和813张同步图像配对供测试。此外,我们还提供了同步视频配对,用于定性分析。数据集包括涵盖10个不同类别的第1920号决议的图像,1080美元。此外,我们提议采用后处理算法,将两台照相机的产出合并在一起。结果显示,与使用单一照相机框架的传统方法相比,我们的技术可以在速度和准确性之间取得平衡。