A recommender system learns to predict the user-specific preference or intention over many items simultaneously for all users, making personalized recommendations based on a relatively small number of observations. One central issue is how to leverage three-way interactions, referred to as user-item-stage dependencies on a monotonic chain of events, to enhance the prediction accuracy. A monotonic chain of events occurs, for instance, in an article sharing dataset, where a ``follow'' action implies a ``like'' action, which in turn implies a ``view'' action. In this article, we develop a multistage recommender system utilizing a two-level monotonic property characterizing a monotonic chain of events for personalized prediction. Particularly, we derive a large-margin classifier based on a nonnegative additive latent factor model in the presence of a high percentage of missing observations, particularly between stages, reducing the number of model parameters for personalized prediction while guaranteeing prediction consistency. On this ground, we derive a regularized cost function to learn user-specific behaviors at different stages, linking decision functions to numerical and categorical covariates to model user-item-stage interactions. Computationally, we derive an algorithm based on blockwise coordinate descent. Theoretically, we show that the two-level monotonic property enhances the accuracy of learning as compared to a standard method treating each stage individually and an ordinal method utilizing only one-level monotonicity. Finally, the proposed method compares favorably with existing methods in simulations and an article sharing dataset.
翻译:推荐者系统学会为所有用户同时预测用户对许多项目的特有偏好或意向,在相对较少的观察基础上提出个性化建议。一个中心问题是如何利用三向互动,即单一事件链上的用户-项目-阶段依赖性,提高预测准确性。例如,在一个共享数据集的文章中出现单一事件链,“跟踪”行动意味着“类似”的行动,这反过来意味着“视图”的动作。在本篇文章中,我们开发了一个多阶段建议系统,利用两个层次的单向属性属性属性特性,将事件单向序列的单向属性属性特性,称为对单一事件链的用户-项目-阶段的依赖性依赖性,以提高预测的准确性。我们根据一个无偏向的添加性潜在因素模型,特别是在两个阶段之间,减少个人化预测的模型参数数量,同时保证预测的一致性。在这里,我们只能得出一个常规的成本函数,学习不同阶段的用户特定行为,将决定功能与个人化事件单向级的单向级的单向性属性链,将决定函数函数和直立分级的特性分级的分解分解分解,在每个阶段中,以模型- 标准级的顺序,我们用一个层次的方法向级的顺序分析,我们学习方法,以演示级的方法向一级进行。