We discuss the problem of adaptive discrete-time signal denoising in the situation where the signal to be recovered admits a "linear oracle" -- an unknown linear estimate that takes the form of convolution of observations with a time-invariant filter. It was shown by Juditsky and Nemirovski (2009) that when the $\ell_2$-norm of the oracle filter is small enough, such oracle can be "mimicked" by an efficiently computable adaptive estimate of the same structure with an observation-driven filter. The filter in question was obtained as a solution to the optimization problem in which the $\ell_\infty$-norm of the Discrete Fourier Transform (DFT) of the estimation residual is minimized under constraint on the $\ell_1$-norm of the filter DFT. In this paper, we discuss a new family of adaptive estimates which rely upon minimizing the $\ell_2$-norm of the estimation residual. We show that such estimators possess better statistical properties than those based on $\ell_\infty$-fit; in particular, we prove oracle inequalities for their $\ell_2$-loss and improved bounds for $\ell_2$- and pointwise losses. The oracle inequalities rely on the "approximate shift-invariance" assumption stating that the signal to be recovered is close to an (unknown) shift-invariant subspace. We also study the relationship of the approximate shift-invariance assumption with the "signal simplicity" assumption introduced in Juditsky and Nemirovski (2009) and discuss the application of the proposed approach to harmonic oscillations denoising.


翻译:我们讨论的是适应性离散时间信号分解的问题, 在这样的情况下, 所要恢复的信号承认了“ 线性或触觉 ”, 这是一种未知的线性估计, 其形式是用时间变异过滤器进行观测。 Juditsky 和 Neimirovski (2009年) 显示, 当甲骨文过滤器的$_ 2美元- 诺调足够小时, 这样甲骨文可以通过一个观察驱动过滤器对同一结构的高效可比较适应性估计“ 被“ 模仿 ” 。 获得该过滤器是为了解决最优化问题, 美元\ ell\ insinfty ormation, 美元变异性2 的调和 货币变换, 在对过滤器 DFT 的 $_ 1美元 诺调限制下, 我们讨论的是一个新的适应性估算组, 它依赖于将美元 美元 美元 美元 的调和 美元 美元 的调值 。 我们表明, 这种估测算器拥有更好的统计特性比 以 $ 美元 美元, 美元 和 美元 货币变换 假设 的 。

0
下载
关闭预览

相关内容

【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
【UMD开放书】机器学习课程书册,19章227页pdf,带你学习ML
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
已删除
将门创投
4+阅读 · 2018年11月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月2日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
已删除
将门创投
4+阅读 · 2018年11月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员