In this paper, we characterize data-time tradeoffs of the proximal-gradient homotopy method used for solving penalized linear inverse problems under sub-Gaussian measurements. Our results are sharp up to an absolute constant factor. We also show that, in the absence of the strong convexity assumption, the proximal-gradient homotopy update can achieve a linear rate of convergence when the number of measurements is sufficiently large. Numerical simulations are provided to verify our theoretical results. All proofs are included in the online full version of this paper.
翻译:在本文中,我们描述用于解决在亚高加索测量法下受罚线性反问题的数据-时间取舍方法的数据-时间取舍。我们的结果直达绝对不变系数。我们还表明,如果没有强烈的顺流假设,在测量数量足够大的情况下,近x-梯度同质性更新可以达到线性趋同率。提供了数字模拟,以核实我们的理论结果。所有证据都包含在本文的在线全文中。