Structural causal models (SCMs) provide a principled approach to identifying causation from observational and experimental data in disciplines ranging from economics to medicine. SCMs, however, require domain knowledge, which is typically represented as graphical models. A key challenge in this context is the absence of a methodological framework for encoding priors (background knowledge) into causal models in a systematic manner. We propose an abstraction called causal knowledge hierarchy (CKH) for encoding priors into causal models. Our approach is based on the foundation of "levels of evidence" in medicine, with a focus on confidence in causal information. Using CKH, we present a methodological framework for encoding causal priors from various data sources and combining them to derive an SCM. We evaluate our approach on a simulated dataset and demonstrate overall performance compared to the ground truth causal model with sensitivity analysis.
翻译:结构性因果模型(SCMs)是确定从观察和实验数据到从经济学到医学学科的学科的因果关系的原则方法。但是,SCMs需要域知识,通常以图形模型的形式表示。这方面的一个关键挑战是,没有将前科(背景知识)系统地编码成因果模型的方法框架。我们建议了将因果知识等级(CKH)抽象地称为因果知识等级(CKH),将前科编码成因果模型。我们的方法基于医学“证据水平”的基础,重点是对因果信息的信心。我们利用CKH, 提出了一个将各种数据源的因果前科编码的方法框架,并将之结合到 SCM中。我们评估了模拟数据集的方法,并展示了与敏感分析的地面因果模型相比的总体表现。