Exchangeability -- in which the distribution of an infinite sequence is invariant to reorderings of its elements -- implies the existence of a simple conditional independence structure that may be leveraged in the design of statistical models and inference procedures. In this work, we study a relaxation of exchangeability in which this invariance need not hold precisely. We introduce the notion of local exchangeability -- where swapping data associated with nearby covariates causes a bounded change in the distribution. We prove that locally exchangeable processes correspond to independent observations from an underlying measure-valued stochastic process. Using this main probabilistic result, we show that the local empirical measure of a finite collection of observations provides an approximation of the underlying measure-valued process and Bayesian posterior predictive distributions. The paper concludes with applications of the main theoretical results to a model from Bayesian nonparametrics and covariate-dependent permutation tests.
翻译:可交换性 -- -- 无限序列的分布变化不定,无法重新排列其要素 -- -- 意味着存在一个简单的有条件独立结构,可用于设计统计模型和推论程序。在这项工作中,我们研究了这种可交换性是否放松,而这种可交换性不需要精确地加以维持。我们引入了可交换性的概念 -- -- 与附近共同变量相关的数据互换导致分配发生约束性变化。我们证明,可当地可交换程序符合从一个基本计量估值的随机进程中独立观察的结果。我们利用这一主要概率性结果,表明有限观测收集的当地经验性计量提供了基本计量估值进程和巴耶西亚后方预测分布的近似近似值。文件最后将主要理论结果应用于巴伊西亚非参数和共变法依赖的变换试验模型。