With the continuously thriving popularity around the world, fitness activity analytic has become an emerging research topic in computer vision. While a variety of new tasks and algorithms have been proposed recently, there are growing hunger for data resources involved in high-quality data, fine-grained labels, and diverse environments. In this paper, we present FLAG3D, a large-scale 3D fitness activity dataset with language instruction containing 180K sequences of 60 categories. FLAG3D features the following three aspects: 1) accurate and dense 3D human pose captured from advanced MoCap system to handle the complex activity and large movement, 2) detailed and professional language instruction to describe how to perform a specific activity, 3) versatile video resources from a high-tech MoCap system, rendering software, and cost-effective smartphones in natural environments. Extensive experiments and in-depth analysis show that FLAG3D contributes great research value for various challenges, such as cross-domain human action recognition, dynamic human mesh recovery, and language-guided human action generation. Our dataset and source code are publicly available at https://andytang15.github.io/FLAG3D.


翻译:随着健身活动在全球范围内不断蓬勃发展,健身活动分析已成为计算机视觉中的新兴研究课题。虽然最近提出了各种新的任务和算法,但对于高质量的数据资源、细粒度标签和多样化环境的需求不断增加。在本文中,我们提出了FLAG3D,这是一个包含60个类别的大规模3D健身活动数据集,带有语言指导,共包含180K个序列。FLAG3D具有以下三个方面的特点:1)从先进的MoCap系统中捕获准确而密集的3D人体姿态,以处理复杂的活动和大幅度的运动;2)详细的专业语言指导,描述如何执行特定的活动;3)多功能视频资源,来自高科技MoCap系统、渲染软件和成本效益高的智能手机在自然环境下。广泛的实验和深入的分析显示,FLAG3D为各种挑战提供了很大的研究价值,例如跨领域的人类动作识别、动态人体网格恢复和以语言为导向的人体动作生成。我们的数据集和源代码公开在https://andytang15.github.io/FLAG3D。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
超全的人脸识别数据集汇总,附打包下载
极市平台
90+阅读 · 2020年3月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
自然语言处理常见数据集、论文最全整理分享
深度学习与NLP
11+阅读 · 2019年1月26日
深度学习自然语言处理阅读清单
专知
23+阅读 · 2019年1月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
VIP会员
相关VIP内容
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
超全的人脸识别数据集汇总,附打包下载
极市平台
90+阅读 · 2020年3月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
自然语言处理常见数据集、论文最全整理分享
深度学习与NLP
11+阅读 · 2019年1月26日
深度学习自然语言处理阅读清单
专知
23+阅读 · 2019年1月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员