Alzheimer's Disease (AD), which is the most common cause of dementia, is a progressive disease preceded by Mild Cognitive Impairment (MCI). Early detection of the disease is crucial for making treatment decisions. However, most of the literature on computer-assisted detection of AD focuses on classifying brain images into one of three major categories: healthy, MCI, and AD; or categorising MCI patients into one of (1) progressive: those who progress from MCI to AD at a future examination time during a given study period, and (2) stable: those who stay as MCI and never progress to AD. This misses the opportunity to accurately identify the trajectory of progressive MCI patients. In this paper, we revisit the brain image classification task for AD identification and re-frame it as an ordinal classification task to predict how close a patient is to the severe AD stage. To this end, we select progressive MCI patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and construct an ordinal dataset with a prediction target that indicates the time to progression to AD. We train a siamese network model to predict the time to onset of AD based on MRI brain images. We also propose a weighted variety of siamese networks and compare its performance to a baseline model. Our evaluations show that incorporating a weighting factor to siamese networks brings considerable performance gain at predicting how close input brain MRI images are to progressing to AD.


翻译:阿尔茨海默病是痴呆症最常见的原因,是一种逐渐进展的疾病,通常先出现轻度认知障碍。早期检测疾病对于作出治疗决策至关重要。然而,大多数关于计算机辅助检测阿尔茨海默病的文献都集中在将脑图像分类为健康、轻度认知障碍和阿尔茨海默病这三大类别,或将轻度认知障碍患者分为具有疾病进展风险和无进展风险这两类。这导致未能精准地确定进展风险较大的轻度认知障碍患者的病情发展轨迹。本文将AD病情分类任务重新定位为预测患者距离重度AD阶段发展还有多长时间的有序分类任务。我们从Alzheimer's Disease Neuroimaging Initiative(ADNI)数据集中选择有病情进展风险的轻度认知障碍患者,构建了一个有序数据集,预测目标是指进展到AD的时间。我们训练了一个孪生网络模型,根据MRI脑图像预测AD的发病时间。我们还提出了一种加权孪生网络,并将其性能与基准模型进行了比较。我们的评估表明,对孪生网络进行加权处理可大大提高预测输入MRI脑图像距离进展为AD还有多长时间的性能。

0
下载
关闭预览

相关内容

视觉弱监督学习研究进展
专知会员服务
31+阅读 · 2022年6月28日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月30日
VIP会员
相关VIP内容
视觉弱监督学习研究进展
专知会员服务
31+阅读 · 2022年6月28日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员