We develop a new statistical model to analyse time-varying ranking data. The model can be used with a large number of ranked items, accommodates exogenous time-varying covariates and partial rankings, and is estimated via maximum likelihood in a straightforward manner. Rankings are modelled using the Plackett-Luce distribution with time-varying worth parameters that follow a mean-reverting time series process. To capture the dependence of the worth parameters on past rankings, we utilize the conditional score in the fashion of the generalized autoregressive score (GAS) models. Simulation experiments show that small-sample properties of the maximum-likelihood estimator improve rapidly with the length of the time series and suggest that statistical inference relying on conventional Hessian-based standard errors is usable even for medium-sized samples. As an illustration, we apply the model to the results of the Ice Hockey World Championships. We also discuss applications to rankings based on underlying indices, repeated surveys, and non-parametric efficiency analysis.
翻译:我们开发了一个新的统计模型来分析时间变化的排名数据。该模型可以用大量排名项目来使用,包括外源时间变化的共和和部分排名,并且以最有可能的方式进行直接估计。排序采用Plackett-Luce分布模型,配有时间变化价值参数,遵循平均翻转时间序列过程。为了了解价值参数对过去排名的依赖性,我们以普遍自动递减分(GAS)模式的方式使用有条件的评分。模拟实验显示,最大类似估量的小型抽样特性随着时间序列的长度而迅速改善,并表明,即使是中等规模的样本也可以使用基于传统的赫斯标准错误的统计推论。举例说,我们将该模型应用于Iceckey世界锦标赛的结果。我们还讨论了基于基本指数、重复调查和非定量效率分析的排名应用情况。