This paper proposes methods for Bayesian inference in time-varying parameter (TVP) quantile regression (QR) models. We use data augmentation schemes to facilitate the conditional likelihood, and render the model conditionally Gaussian to develop an efficient Gibbs sampling algorithm. Regularization of the high-dimensional parameter space is achieved via flexible dynamic shrinkage priors. A simple version of the TVP-QR based on an unobserved component (UC) model is applied to dynamically trace the quantiles of the distribution of inflation in the United States (US), the United Kingdom (UK) and the euro area (EA). We conduct an out-of-sample inflation forecasting exercise to assess predictive accuracy of the proposed framework versus several benchmarks using metrics to capture performance in different parts of the distribution. The proposed model is competitive and performs particularly well for higher-order and tail forecasts. We analyze the resulting predictive distributions and find that they are often skewed and feature heavier than normal tails.
翻译:本文为时间变化参数(TVP)四分位回归(QR)模型中的巴伊西亚推理方法提出建议。我们使用数据增强计划来方便有条件的可能性,并使模型有条件地成为高森模型来开发高效的Gibs抽样算法。通过灵活的动态缩水前科实现高维参数空间的正规化。基于未观测成份(UC)模型的TVP-QR简单版本用于动态追踪美国(美国)、联合王国(联合王国)和欧元区(EA)通货膨胀分布的四分点。我们开展了一种模拟性通货膨胀预测活动,以评估拟议框架的预测准确性,而不是使用若干基准来捕捉分布不同部分的性能。拟议模型具有竞争力,在更高级和尾部预报方面表现特别好。我们分析了由此得出的预测分布,发现它们往往偏斜和特征比正常尾巴重。