Sparse matrix multiplication is an important component of linear algebra computations. In this paper, an architecture based on Content Addressable Memory (CAM) and Resistive Content Addressable Memory (ReCAM) is proposed for accelerating sparse matrix by sparse vector and matrix multiplication in CSR format. Using functional simulation, we show that the proposed ReCAM-based accelerator exhibits two orders of magnitude higher power efficiency as compared to existing sparse matrix-vector multiplication implementations.
翻译:剖析矩阵乘法是线性代数计算的一个重要部分。 在本文中,提议以内容可处理内存(CAM)和耐性内容可处理内存(ReCAM)为基础的结构,以通过分散矢量和矩阵倍增(以 CSR 格式)加速稀薄矩阵。我们通过功能模拟,显示拟议的基于 ReCAM 的加速器显示,与现有的稀薄矩阵倍增执行相比,其功率提高了两个级。