Due to the Internet of Things (IoT) proliferation, Radio Frequency (RF) channels are increasingly congested with new kinds of devices, which carry unique and diverse communication needs. This poses complex challenges in modern digital communications, and calls for the development of technological innovations that (i) optimize capacity (bitrate) in limited bandwidth environments, (ii) integrate cooperatively with already-deployed RF protocols, and (iii) are adaptive to the ever-changing demands in modern digital communications. In this paper we present methods for applying deep neural networks for spectral filling. Given an RF channel transmitting digital messages with a pre-established modulation scheme, we automatically learn novel modulation schemes for sending extra information, in the form of additional messages, "around" the fixed-modulation signals (i.e., without interfering with them). In so doing, we effectively increase channel capacity without increasing bandwidth. We further demonstrate the ability to generate signals that closely resemble the original modulations, such that the presence of extra messages is undetectable to third-party listeners. We present three computational experiments demonstrating the efficacy of our methods, and conclude by discussing the implications of our results for modern RF applications.
翻译:由于物(IoT)的互联网扩散,无线电频率(RF)频道日益与具有独特和多样通信需要的新种类装置相联,给现代数字通信带来复杂的挑战,要求发展技术创新,以便(一) 在有限的带宽环境中优化能力(bitrate),(二) 与已经部署的RF协议合作结合,(三) 适应现代数字通信不断变化的需求。在本文中,我们介绍了应用深神经网络填补光谱的各种方法。鉴于一个带有预先建立调制计划的传输数字信息的RF频道,我们自动学习以补充信息的形式发送额外信息的新调制方案,即“更换”固定调制信号(即不干扰这些信号)。我们这样做可以有效地提高频道能力,而不会增加带宽。我们进一步展示产生与原始调制相近的信号的能力,这样,额外信息的存在不会被第三方听众察觉。我们介绍了三个计算实验,展示了我们方法的功效,并通过讨论现代应用的结果来完成。