Scalability has been a bottleneck for major blockchains such as Bitcoin and Ethereum. Despite the significantly improved scalability claimed by several high-profile blockchain projects, there has been little effort to understand how their transactional throughput is being used. In this paper, we examine recent network traffic of three major high-scalability blockchains-EOS, Tezos and XRP-over a period of three months.Our analysis reveals that only a small fraction of the transactions are used for value transfer purposes. In particular, 95% of the transactions on EOS were triggered by the airdrop of a currently valueless token; on Tezos, 82% of throughput was used for maintaining consensus; and only 2% of transactions on the XRP ledger lead to value transfers. The paper explores the different designs of the three blockchains and sheds light on how they could shape user behavior.


翻译:Bitcoin 和 Etherem 等主要块块链的可缩缩性一直是一个瓶颈。 尽管几个引人注目的块链项目声称其可缩放性大为改善,但几乎没有努力去了解其交易过程是如何使用的。 在本文中,我们审查了最近三个主要高缩块链-EOS、Tezos 和 XRP 的网络流量,为期三个月。 我们的分析显示,只有一小部分交易用于价值转移目的。 特别是, EOS 95%的交易是由目前一个无价值的标牌空投引发的;在Tezos,82%的吞吐量用于维持共识;在XRP分类账上只有2%的交易导致价值转移。 该文件探讨了三个块链的不同设计,并说明了它们如何影响用户的行为。

0
下载
关闭预览

相关内容

区块链(Blockchain)是由节点参与的分布式数据库系统,它的特点是不可更改,不可伪造,也可以将其理解为账簿系统(ledger)。它是比特币的一个重要概念,完整比特币区块链的副本,记录了其代币(token)的每一笔交易。通过这些信息,我们可以找到每一个地址,在历史上任何一点所拥有的价值。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
92+阅读 · 2020年2月28日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员