Uncertainty involved in computational materials modeling needs to be quantified to enhance the credibility of predictions. Tracking the propagation of model-form and parameter uncertainty for each simulation step, however, is computationally expensive. In this paper, a multiscale stochastic reduced-order model (ROM) is proposed to propagate the uncertainty as a stochastic process with Gaussian noise. The quantity of interest (QoI) is modeled by a non-linear Langevin equation, where its associated probability density function is propagated using Fokker-Planck equation. The drift and diffusion coefficients of the Fokker-Planck equation are trained and tested from the time-series dataset obtained from direct numerical simulations. Considering microstructure descriptors in the microstructure evolution as QoIs, we demonstrate our proposed methodology in three integrated computational materials engineering (ICME) models: kinetic Monte Carlo, phase field, and molecular dynamics simulations. It is demonstrated that once calibrated correctly using the available time-series datasets from these ICME models, the proposed ROM is capable of propagating the microstructure descriptors dynamically, and the results agree well with the ICME models.
翻译:计算材料模型的不确定性需要量化,以提高预测的可信度。 但是,跟踪模型形式和参数不确定性的传播对于每个模拟步骤来说都是昂贵的。 在本文中,建议采用一个多尺度的随机减序模型(ROM),将不确定性作为高斯噪音的随机过程来传播。利息的数量(QoI)是由非线性朗埃文方程式模型(QoI)模拟的,该方程式的相关概率密度函数使用Fokker-Planck方程式传播。 Fokker-Planck方程式的漂移和扩散系数是从直接数字模拟中获得的时间序列数据集中培训和测试的。考虑到微结构变异中的微结构描述器作为QoIs,我们用三种综合计算材料工程模型(ICME)展示了我们拟议的方法:动能蒙特卡洛、阶段场和分子动态模拟。 事实证明,一旦使用这些ICME模型的现有时间序列数据集进行校准,拟议的IROM模型就能够使微结构的模型得到支持。