BCH codes and their dual codes are two special subclasses of cyclic codes and are the best linear codes in many cases. A lot of progress on the study of BCH cyclic codes has been made, but little is known about the minimum distances of the duals of BCH codes. Recently, a new concept called dually-BCH code was introduced to investigate the duals of BCH codes and the lower bounds on their minimum distances in \cite{GDL21}. For a prime power $q$ and an integer $m \ge 4$, let $n=\frac{q^m-1}{q+1}$ \ ($m$ even), or $n=\frac{q^m-1}{q-1}$ \ ($q>2$). In this paper, some sufficient and necessary conditions in terms of the designed distance will be given to ensure that the narrow-sense BCH codes of length $n$ are dually-BCH codes, which extended the results in \cite{GDL21}. Lower bounds on the minimum distances of their dual codes are developed for $n=\frac{q^m-1}{q+1}$ \ ($m$ even). As byproducts, we present the largest coset leader $\delta_1$ modulo $n$ being of two types, which proves a conjecture in \cite{WLP19} and partially solves an open problem in \cite{Li2017}. We also investigate the parameters of the narrow-sense BCH codes of length $n$ with design distance $\delta_1$. The BCH codes presented in this paper have good parameters in general.
翻译:BCH代码及其双重代码是两个特殊的自行车代码亚类, 在许多情况下是最好的线性代码。 在研究 BCH 周期代码方面已经取得了许多进展, 但对于 BCH 代码的最小距离却知之甚少。 最近, 引入了一个新的概念, 名为 双溴- BCH 代码的新概念, 以调查 BCH 代码的双倍值及其最小距离的下限 。 在\ cite {GDL21} 中, 用于调查 $ 和 4 的纯 美元 。 对于一个主功率 $ 和 $ 4 的整数, 允许 $ $ {qQQ+1} 参数 的纯利差值, 或 $ wm, 或 美元 美元 美元 的最小距离值 。 在本文中, 将给出一些足够和必要的条件, 用于调查 BCH 美元 长度 的狭值, 美元 以 美元 美元 。 以 美元 美元 以 美元 平价 的 。