Time series classification is a task that aims at classifying chronological data. It is used in a diverse range of domains such as meteorology, medicine and physics. In the last decade, many algorithms have been built to perform this task with very appreciable accuracy. However, applications where time series have uncertainty has been under-explored. Using uncertainty propagation techniques, we propose a new uncertain dissimilarity measure based on Euclidean distance. We then propose the uncertain shapelet transform algorithm for the classification of uncertain time series. The large experiments we conducted on state of the art datasets show the effectiveness of our contribution. The source code of our contribution and the datasets we used are all available on a public repository.
翻译:时间序列分类是一项旨在对时间序列数据进行分类的任务。 它用于气象学、医学和物理学等多种领域。 在过去的十年中,为了非常准确地完成这项任务,已经建立了许多算法。 但是,时间序列具有不确定性的应用程序探索不足。 我们使用不确定性传播技术,提出了一个新的基于Euclidean距离的不确定差异计量方法。 然后,我们提议了不确定的形状模型转换算法,用于对不确定的时间序列进行分类。 我们在艺术数据集状况上进行的大规模实验显示了我们的贡献的有效性。 我们贡献的来源代码和我们使用的数据集都存放在一个公共储存库中。