Document Summarization is the procedure of generating a meaningful and concise summary of a given document with the inclusion of relevant and topic-important points. There are two approaches: one is picking up the most relevant statements from the document itself and adding it to the Summary known as Extractive and the other is generating sentences for the Summary known as Abstractive Summarization. Training a machine learning model to perform tasks that are time-consuming or very difficult for humans to evaluate is a major challenge. Book Abstract generation is one of such complex tasks. Traditional machine learning models are getting modified with pre-trained transformers. Transformer based language models trained in a self-supervised fashion are gaining a lot of attention; when fine-tuned for Natural Language Processing(NLP) downstream task like text summarization. This work is an attempt to use Transformer based techniques for Abstract generation.


翻译:文件摘要是生成一份有意义和简明的文件概要的程序,其中要包含相关和重要专题要点。有两种办法:一种是从文件本身中收集最相关的说明,将其添加到称为“摘要摘要”的概要中,另一种是给摘要(称为“摘要摘要摘要”)带来句子。培训机器学习模式,以完成耗费时间或对人类来说很难评估的任务是一项重大挑战。书摘要的生成是这类复杂任务之一。传统机器学习模式正在随着培训前的变压器而改变。以自我监督方式培训的基于变换语言模型正在引起人们的极大关注;在对自然语言处理(NLP)下游任务(如文本汇总)进行微调时,这项工作试图利用变换器技术来生成摘要。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2021年12月19日
Arxiv
49+阅读 · 2021年9月11日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员