Existing real-world video super-resolution (VSR) methods focus on designing a general degradation pipeline for open-domain videos while ignoring data intrinsic characteristics which strongly limit their performance when applying to some specific domains (e.g. animation videos). In this paper, we thoroughly explore the characteristics of animation videos and leverage the rich priors in real-world animation data for a more practical animation VSR model. In particular, we propose a multi-scale Vector-Quantized Degradation model for animation video Super-Resolution (VQD-SR) to decompose the local details from global structures and transfer the degradation priors in real-world animation videos to a learned vector-quantized codebook for degradation modeling. A rich-content Real Animation Low-quality (RAL) video dataset is collected for extracting the priors. We further propose a data enhancement strategy for high-resolution (HR) training videos based on our observation that existing HR videos are mostly collected from the Web which contains conspicuous compression artifacts. The proposed strategy is valid to lift the upper bound of animation VSR performance, regardless of the specific VSR model. Experimental results demonstrate the superiority of the proposed VQD-SR over state-of-the-art methods, through extensive quantitative and qualitative evaluations of the latest animation video super-resolution benchmark.
翻译:现有的实际视频超分辨率(VSR)方法着重于为开放领域视频设计通用的退化管道,而忽略数据固有特性,当应用于某些特定领域(如动画视频)时,这些特性极大地限制了它们的性能。在本文中,我们深入探讨动画视频的特性,并利用真实世界动画数据中的丰富先验知识,提出更实用的动画 VSR 模型。具体而言,我们提出了一种针对动画视频超分辨率的多尺度向量量化退化模型(VQD-SR),以将局部细节从全局结构中分解出来,并将真实世界动画视频的退化先验知识转移到学习的向量量化码本中进行模型建模。我们还收集了一个富含真实动画低质量(RAL)视频数据集,以提取先验。我们进一步提出了一种基于我们的观察的针对高分辨率(HR)训练视频的数据增强策略,即现有的 HR 视频大多数来自于包含明显压缩伪影的 Web。无论采用具体的 VSR 模型,该策略都能有效提高动画 VSR 性能的上限。通过对最新的动画视频超分辨率基准的广泛定量和定性评估,实验结果证明了我们提出的 VQD-SR 方法的优越性。