We develop three approaches of combinatorial flavour to study the structure of minimal codes and cutting blocking sets in finite geometry, each of which has a particular application. The first approach uses techniques from algebraic combinatorics, describing the supports in a linear code via the Alon-F\"uredi Theorem and the Combinatorial Nullstellensatz. The second approach combines methods from coding theory and statistics to compare the mean and variance of the nonzero weights in a minimal code. Finally, the third approach regards minimal codes as cutting blocking sets and studies these using the theory of spreads in finite geometry. Applying and combining these approaches with each other, we derive several new bounds and constraints on the parameters of minimal codes. Moreover, we obtain two new constructions of cutting blocking sets of small cardinality in finite projective spaces. In turn, these allow us to give explicit constructions of minimal codes having short length for the given field and dimension.
翻译:我们开发了三种组合色调方法,以研究最低代码的结构,并切断限制几何的封隔装置,每种方法都有特定的应用。第一种方法使用代数组合法的技术,通过 Alon-F\'uredi Theorem 和 Nullstellensatz 在线性代码中描述支持。第二种方法结合了编码理论和统计方法,以比较最低代码中非零重量的平均值和差异。最后,第三种方法将最低代码视为切断封隔装置,并利用有限几何法的扩展理论来研究这些装置。我们应用和结合这些方法,在最低限度代码参数上得出了几个新的界限和限制。此外,我们获得了在有限投影空间切割小型基点的阻截装置的两套新结构。反过来,这些方法使我们能够对特定字段和尺寸短长度的最低限度代码进行明确的构建。