Recently, Letzter proved that any graph of order $n$ contains a collection $\mathcal{P}$ of $O(n\log^\star n)$ paths with the following property: for all distinct edges $e$ and $f$ there exists a path in $\mathcal{P}$ which contains $e$ but not $f$. We improve this upper bound to $19 n$, thus answering a question of G.O.H. Katona and confirming a conjecture independently posed by Balogh, Csaba, Martin, and Pluh\'ar and by Falgas-Ravry, Kittipassorn, Kor\'andi, Letzter, and Narayanan. Our proof is elementary and self-contained.
翻译:暂无翻译