Student modeling, the task of inferring a student's learning characteristics through their interactions with coursework, is a fundamental issue in intelligent education. Although the recent attempts from knowledge tracing and cognitive diagnosis propose several promising directions for improving the usability and effectiveness of current models, the existing public datasets are still insufficient to meet the need for these potential solutions due to their ignorance of complete exercising contexts, fine-grained concepts, and cognitive labels. In this paper, we present MoocRadar, a fine-grained, multi-aspect knowledge repository consisting of 2,513 exercise questions, 5,600 knowledge concepts, and over 12 million behavioral records. Specifically, we propose a framework to guarantee a high-quality and comprehensive annotation of fine-grained concepts and cognitive labels. The statistical and experimental results indicate that our dataset provides the basis for the future improvements of existing methods. Moreover, to support the convenient usage for researchers, we release a set of tools for data querying, model adaption, and even the extension of our repository, which are now available at https://github.com/THU-KEG/MOOC-Radar.


翻译:学生建模,即通过学生与课程交互来推断学生学习特征的任务,是智能教育中的一个基本问题。虽然最近从知识追踪和认知诊断提出了几个有前途的改进方向,以提高当前模型的可用性和有效性,但现有的公共数据集仍然不足以满足这些潜在解决方案的需求,因为它们忽略了完整的练习上下文,精细的概念和认知标签。在本文中,我们提出了MoocRadar,这是一个细粒度的、多方面的知识库,由2,513个练习题、5,600个知识概念和超过12百万的行为记录组成。具体而言,我们提出了一个框架来保证精细的概念和认知标签的高质量和全面注释。统计和实验结果表明,我们的数据集为现有方法的未来改进提供了基础。此外,为了支持研究人员方便使用,我们发布了一组工具,用于数据查询、模型适应甚至扩展我们的仓库,这些工具现在可在https://github.com/THU-KEG/MOOC-Radar上使用。

0
下载
关闭预览

相关内容

MOOCs,大规模开放在线课程。 A massive open online course (MOOC; /muːk/) is an online course aimed at unlimited participation and open access via the web.
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
127+阅读 · 2023年1月29日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
102+阅读 · 2020年3月4日
VIP会员
相关资讯
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员