Binary neural networks, i.e., neural networks whose parameters and activations are constrained to only two possible values, offer a compelling avenue for the deployment of deep learning models on energy- and memory-limited devices. However, their training, architectural design, and hyperparameter tuning remain challenging as these involve multiple computationally expensive combinatorial optimization problems. Here we introduce quantum hypernetworks as a mechanism to train binary neural networks on quantum computers, which unify the search over parameters, hyperparameters, and architectures in a single optimization loop. Through classical simulations, we demonstrate that of our approach effectively finds optimal parameters, hyperparameters and architectural choices with high probability on classification problems including a two-dimensional Gaussian dataset and a scaled-down version of the MNIST handwritten digits. We represent our quantum hypernetworks as variational quantum circuits, and find that an optimal circuit depth maximizes the probability of finding performant binary neural networks. Our unified approach provides an immense scope for other applications in the field of machine learning.
翻译:二线神经网络,即神经网络,其参数和激活仅受两个可能值的限制,为部署能源和内存限制装置的深学习模型提供了一条令人信服的途径。然而,它们的训练、建筑设计和超参数调整仍然具有挑战性,因为这些网络涉及多种计算成本昂贵的组合优化问题。在这里,我们引入了量子超网络,作为在量子计算机上培训双线神经网络的一种机制,这些网络将参数、超参数和结构的搜索集中在单一优化循环中。通过古典模拟,我们的方法有效地找到了最佳参数、超参数和建筑选择,在分类问题上极有可能找到,包括二维高斯数据集和缩缩放版的MNIST手写数字。我们把我们的量子超网络作为变异量量量量电路,发现最佳的电路深将找到性能双线网络的概率最大化。我们的统一方法为机器学习领域的其他应用提供了巨大的范围。