Given a class of $q$-local Hamiltonians, is it possible to find a simple variational state whose energy is a finite fraction of the ground state energy in the thermodynamic limit? Whereas product states often provide an affirmative answer in the case of bosonic (or qubit) models, we show that Gaussian states fail dramatically in the fermionic case, like for the Sachdev-Ye-Kitaev (SYK) models. This prompts us to propose a new class of wavefunctions for SYK models inspired by the variational coupled cluster algorithm. We introduce a static ("0+0D") large-$N$ field theory to study the energy, two-point correlators, and entanglement properties of these states. Most importantly, we demonstrate a finite disorder-averaged approximation ratio of $r \approx 0.62$ between the variational and ground state energy of SYK for $q=4$. Moreover, the variational states provide an exact description of spontaneous symmetry breaking in a related two-flavor SYK model.
翻译:以当地汉密尔顿人为单位,能否找到一种简单的变异状态,其能量在热力极限中是地面状态能源的有限部分?虽然产品国通常对bosonic(或qubit)模型提供肯定的答案,但我们显示,高盛州在风速中严重失灵,就像Sachdev-Ye-Kitaev(SyK)模型那样。这促使我们为SYK模型提出一种由变异组合组合算法启发的新的波子类别。我们引入了一种静态(“0+0D”)的大-N$实地理论来研究这些州的能源、两点关联器和纠结特性。最重要的是,我们展示了SYK变异能和地面能量之间以美元=4美元为单位的有限无序平均近似率为0.62美元。此外,变异状态国提供了在相关的二维斯拉夫SYK模型中自发性对称断的精确描述。