Android apps are GUI-based event-driven software and have become ubiquitous in recent years. Obviously, functional correctness is critical for an app's success. However, in addition to crash bugs, non-crashing functional bugs (in short as "non-crashing bugs" in this work) like inadvertent function failures, silent user data lost and incorrect display information are prevalent, even in popular, well-tested apps. These non-crashing functional bugs are usually caused by program logic errors and manifest themselves on the graphic user interfaces (GUIs). In practice, such bugs pose significant challenges in effectively detecting them because (1) current practices heavily rely on expensive, small-scale manual validation (the lack of automation); and (2) modern fully automated testing has been limited to crash bugs (the lack of test oracles). This paper fills this gap by introducing independent view fuzzing, a novel, fully automated approach for detecting non-crashing functional bugs in Android apps. Inspired by metamorphic testing, our key insight is to leverage the commonly-held independent view property of Android apps to manufacture property-preserving mutant tests from a set of seed tests that validate certain app properties. The mutated tests help exercise the tested apps under additional, adverse conditions. Any property violations indicate likely functional bugs for further manual confirmation. We have realized our approach as an automated, end-to-end functional fuzzing tool, Genie. Given an app, (1) Genie automatically detects non-crashing bugs without requiring human-provided tests and oracles (thus fully automated); and (2) the detected non-crashing bugs are diverse (thus general and not limited to specific functional properties), which set Genie apart from prior work.


翻译:Android 应用程序是基于 GUI 的事件驱动软件, 近些年来这些非崩溃功能错误通常由程序逻辑错误造成, 并在图形用户界面( GUI ) 上表现出来。 在实践中, 功能正确性在有效检测这些错误方面构成了重大挑战, 因为(1) 目前的做法严重依赖昂贵的、小规模的手动验证( 缺乏自动化);(2) 现代完全自动测试仅限于崩溃错误( 缺乏测试或触摸器) 。 本文通过引入独立的观点模糊、 新型和完全自动化的方法来填补这一空白( 检测安集成软件中的非崩溃功能错误 ) 。 ( ) 由程序逻辑错误和图形用户界面( GUIs ) 显示自己。 实际上, 这些错误在有效检测它们方面构成了巨大的挑战, 因为(1) 目前的做法严重依赖昂贵的、小规模的手动验证( 缺乏自动化); (2) 现代的完全自动测试限于崩溃错误( 缺乏测试任何工具) 。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
15+阅读 · 2021年5月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
49篇ICLR2020高分「图机器学习GML」接受论文及代码
专知会员服务
61+阅读 · 2020年1月18日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
10+阅读 · 2019年3月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
A Survey on Automated Fact-Checking
Arxiv
8+阅读 · 2021年8月26日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
15+阅读 · 2021年5月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
49篇ICLR2020高分「图机器学习GML」接受论文及代码
专知会员服务
61+阅读 · 2020年1月18日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
10+阅读 · 2019年3月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员