Live traffic analysis at the first aggregation point in the ISP network enables the implementation of complex traffic engineering policies but is limited by the scarce processing capabilities, especially for Deep Learning (DL) based analytics. The introduction of specialized hardware accelerators i.e., Tensor Processing Unit (TPU), offers the opportunity to enhance the processing capabilities of network devices at the edge. Yet, to date, no packet processing pipeline is capable of offering DL-based analysis capabilities in the data-plane, without interfering with network operations. In this paper, we present FENXI, a system to run complex analytics by leveraging TPU. The design of FENXI decouples forwarding operations and traffic analytics which operates at different granularities i.e., packet and flow levels. We conceive two independent modules that asynchronously communicate to exchange network data and analytics results, and design data structures to extract flow level statistics without impacting per-packet processing. We prototyped and evaluated FENXI on general-purpose servers considering both adversarial and realistic network conditions. Our analysis shows that FENXI can sustain 100 Gbps line rate traffic processing requiring only limited resources, while also dynamically adapting to variable network conditions.
翻译:在ISP网络的第一个总合点进行现场交通分析,有助于执行复杂的交通工程政策,但受到缺乏的处理能力的限制,特别是深度学习分析(DL)的处理能力。采用专门的硬件加速器,即Tensor处理股(TPU),为增强边缘网络装置的处理能力提供了机会。然而,迄今为止,没有任何包处理管道能够在不干扰网络操作的情况下,在数据平面上提供基于DL的基于DL的分析能力,而不会干扰网络操作。在本文中,我们提出FENXI,这是一个利用TPU运行复杂分析器的系统。FENXI的脱couples转发操作和交通分析器的设计是在不同的微粒上操作的,即包和流层。我们设想了两个独立模块,这些模块不同步地交流网络数据和分析结果,并设计数据结构,以便在不影响每个软件包处理的情况下提取流级统计数据。我们用FENXI进行原型和评估了一般用途服务器上的FENXI系统,它既能调节,又符合现实的网络条件。我们的分析显示,FENXI的传输率在需要100个动态的网络处理时,也显示FENXI可以维持可变的G。