Near infrared (NIR) to Visible (VIS) face matching is challenging due to the significant domain gaps as well as a lack of sufficient data for cross-modality model training. To overcome this problem, we propose a novel method for paired NIR-VIS facial image generation. Specifically, we reconstruct 3D face shape and reflectance from a large 2D facial dataset and introduce a novel method of transforming the VIS reflectance to NIR reflectance. We then use a physically-based renderer to generate a vast, high-resolution and photorealistic dataset consisting of various poses and identities in the NIR and VIS spectra. Moreover, to facilitate the identity feature learning, we propose an IDentity-based Maximum Mean Discrepancy (ID-MMD) loss, which not only reduces the modality gap between NIR and VIS images at the domain level but encourages the network to focus on the identity features instead of facial details, such as poses and accessories. Extensive experiments conducted on four challenging NIR-VIS face recognition benchmarks demonstrate that the proposed method can achieve comparable performance with the state-of-the-art (SOTA) methods without requiring any existing NIR-VIS face recognition datasets. With slightly fine-tuning on the target NIR-VIS face recognition datasets, our method can significantly surpass the SOTA performance. Code and pretrained models are released under the insightface (https://github.com/deepinsight/insightface/tree/master/recognition).
翻译:近红外线(NIR)与可见(VIS)相匹配是一个挑战性的挑战,原因是领域差距巨大,而且缺乏供跨模式模型培训所需的足够数据。为了克服这一问题,我们提议了一个配对 NIR-VIS 面部图像生成的新颖方法。具体地说,我们从大型的 2D 面部数据集中重建3D面部形状和反射,并引入了将VIS 反射转化为 NIR 反射的新方法。我们随后使用一个基于物理的成像器来生成一个庞大的、高分辨率和摄影现实化的数据集,其中包括NIR 和VIS 光谱中的各种成份和身份。此外,为了便利身份特征特征学习,我们提议了一种基于身份特征的、基于最大比例差异(ID-MD)面部面部图像生成的新方法。 不仅缩小了NIR 和VIS 图像在域级层面的模型之间的模式差距,而且鼓励网络关注身份特征而不是面部和附件。在四项具有挑战性的NIR-VI-S 脸识别基准上进行的广泛实验表明,拟议的方法可以实现与州面面面部/直观/直观/IR 的可比较识别/直观(S (S) 要求下的任何数据识别/直观),在S 下需要彻底识别/直观数据识别/直径识别/直观(S) 下的任何数据法下,在S 下需要下的任何数据。在S) 任何前的升级数据(S 。