Transformer-based speech recognition models have achieved great success due to the self-attention (SA) mechanism that utilizes every frame in the feature extraction process. Especially, SA heads in lower layers capture various phonetic characteristics by the query-key dot product, which is designed to compute the pairwise relationship between frames. In this paper, we propose a variant of SA to extract more representative phonetic features. The proposed phonetic self-attention (phSA) is composed of two different types of phonetic attention; one is similarity-based and the other is content-based. In short, similarity-based attention captures the correlation between frames while content-based attention only considers each frame without being affected by other frames. We identify which parts of the original dot product equation are related to two different attention patterns and improve each part with simple modifications. Our experiments on phoneme classification and speech recognition show that replacing SA with phSA for lower layers improves the recognition performance without increasing the latency and the parameter size.


翻译:以变换器为基础的语音识别模型取得了巨大成功,因为自省(SA)机制利用了特征提取过程中的每一个框架。 特别是, 低层的SA头通过查询键点产品捕捉到各种语音特征, 用于计算各框架之间的对称关系。 在本文中, 我们提出一个SA变式, 以提取更具代表性的语音特征。 提议的语音自留(phSA) 由两种不同的语音关注类型组成; 一种基于相似性, 另一种基于内容。 简言之, 类似性的注意力捕捉到各框架之间的关联, 而内容基关注只考虑每个框架而不受其他框架的影响。 我们确定最初的点产品方程式的哪些部分与两种不同的关注模式相关, 并用简单的修改来改进每个部分。 我们在电话分类和语音识别方面的实验显示, 以低层的phSA 取代SA 将提高识别性能, 但不增加延绳和参数大小 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Attention Enhanced Citrinet for Speech Recognition
Arxiv
0+阅读 · 2022年9月1日
Arxiv
0+阅读 · 2022年9月1日
Arxiv
0+阅读 · 2022年9月1日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员