A common setting of reinforcement learning (RL) is a Markov decision process (MDP) in which the environment is a stochastic discrete-time dynamical system. Whereas MDPs are suitable in such applications as video-games or puzzles, physical systems are time-continuous. Continuous methods of RL are known, but they have their limitations, such as, e.g., collapse of Q-learning. A general variant of RL is of digital format, where updates of the value and policy are performed at discrete moments in time. The agent-environment loop then amounts to a sampled system, whereby sample-and-hold is a specific case. In this paper, we propose and benchmark two RL methods suitable for sampled systems. Specifically, we hybridize model-predictive control (MPC) with critics learning the Q- and value function. Optimality is analyzed and performance comparison is done in an experimental case study with a mobile robot.


翻译:常见的强化学习设置(RL)是一个Markov决定程序,环境是一个随机离散的离散时间动态系统。虽然MDP适合于视频游戏或拼图等应用,但物理系统是时间性的。人们知道RL的连续方法,但它们有其局限性,例如Q学习的崩溃。RL的一般变量是数字格式,在不连续的时刻对数值和政策进行更新。代理环境循环随后相当于一个抽样系统,其中样本和持有是一个具体案例。在本文件中,我们提议和基准两种RL方法适合抽样系统。具体地说,我们将模型-预知控制(MPC)与批评者学习Q-和值功能的混合。在与移动机器人进行的试验性案例研究中,对优化进行了分析,并进行了绩效比较。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
155+阅读 · 2020年8月7日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
13+阅读 · 2018年4月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
On-Policy Model Errors in Reinforcement Learning
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
4+阅读 · 2018年12月3日
Paraphrase Generation with Deep Reinforcement Learning
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
【DeepMind】强化学习教程,83页ppt
专知会员服务
155+阅读 · 2020年8月7日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
13+阅读 · 2018年4月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员