In the age of information overload and polarized discourse, understanding media bias has become imperative for informed decision-making and fostering a balanced public discourse. However, without the experts' analysis, it is hard for the readers to distinguish bias from the news articles. This paper presents IndiTag, an innovative online media bias analysis system that leverages fine-grained bias indicators to dissect and distinguish bias in digital content. IndiTag offers a novel approach by incorporating large language models, bias indicators, and vector database to detect and interpret bias automatically. Complemented by a user-friendly interface facilitating automated bias analysis for readers, IndiTag offers a comprehensive platform for in-depth bias examination. We demonstrate the efficacy and versatility of IndiTag through experiments on four datasets encompassing news articles from diverse platforms. Furthermore, we discuss potential applications of IndiTag in fostering media literacy, facilitating fact-checking initiatives, and enhancing the transparency and accountability of digital media platforms. IndiTag stands as a valuable tool in the pursuit of fostering a more informed, discerning, and inclusive public discourse in the digital age. We release an online system for end users and the source code is available at https://github.com/lylin0/IndiTag.


翻译:在信息过载与舆论极化的时代,理解媒体偏见对于知情决策和促进平衡的公共讨论至关重要。然而,若无专家分析,读者难以从新闻文章中识别偏见。本文提出IndiTag,一种创新的在线媒体偏见分析系统,利用细粒度偏见指标来剖析和区分数字内容中的偏见。IndiTag通过整合大语言模型、偏见指标与向量数据库,实现了自动化的偏见检测与解读,提供了一种新颖的研究方法。该系统辅以用户友好的界面,为读者提供自动化的偏见分析功能,构建了一个全面的深度偏见检测平台。我们在涵盖多平台新闻文章的四个数据集上进行了实验,验证了IndiTag的有效性与普适性。此外,我们探讨了IndiTag在提升媒体素养、辅助事实核查项目、增强数字媒体平台透明度与问责制方面的潜在应用。IndiTag作为一项重要工具,致力于在数字时代推动更知情、更具辨识力且包容的公共讨论。我们已发布面向终端用户的在线系统,源代码可在https://github.com/lylin0/IndiTag获取。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员