It is well known that when IoT traffic is unencrypted it is possible to identify the active devices based on their TCP/IP headers. And when traffic is encrypted, packet-sizes and timings can still be used to do so. To defend against such fingerprinting, traffic padding and shaping were introduced. In this paper we demonstrate that the packet-sizes distribution can still be used to successfully fingerprint the active IoT devices when shaping and padding are used, as long as the adversary is aware that these mitigations are deployed, and even if the values of the padding and shaping parameters are unknown. The main tool we use in our analysis is the full distribution of packet-sizes, as opposed to commonly used statistics such as mean and variance. We further show how an external adversary who only sees the padded and shaped traffic as aggregated and hidden behind a NAT middlebox can accurately identify the subset of active devices with Recall and Precision of at least 96%. We also show that the adversary can distinguish time windows containing only bogus cover packets from windows with real device activity, at a granularity of $1sec$ time windows, with 81% accuracy. Using similar methodology, but now on the defender's side, we are also able to detect anomalous activities in IoT traffic due to the Mirai worm.


翻译:众所周知, 当 IoT 流量未加密时, 可以根据 TCP/ IP 信头识别活动装置。 当流量加密时, 仍然可以使用包尺寸和时间来进行加密。 防模指纹、 交通布局和形状等的设置。 在本文中, 我们证明, 只要对手知道这些减缓措施已经部署, 并且即使定位参数和形状参数的值未知, 仍然可以识别活动装置。 我们的分析中所使用的主要工具是完整分布包尺寸, 而不是通常使用的数据, 如平均值和差异。 我们进一步显示, 一个外部对手, 只能看到加装和形状的流量, 在 NAT 中间盒子中加装和隐藏, 可以准确识别至少96 % 的活性装置的子。 我们还显示, 对手可以辨别时间窗口, 仅包含有真实设备活动的遮盖包子和形状。 我们的分析所使用的主要工具是包尺寸, 而不是通常使用的平均值和差异等统计数据。 我们进一步显示, 一个外部对手如何只看到加装和形状的流量, 并且使用类似 81 的定位窗口 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年6月21日
专知会员服务
40+阅读 · 2020年9月6日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
已删除
将门创投
7+阅读 · 2017年7月11日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年6月21日
专知会员服务
40+阅读 · 2020年9月6日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
已删除
将门创投
7+阅读 · 2017年7月11日
Top
微信扫码咨询专知VIP会员