Actuated by the growing attention to personal healthcare and the pandemic, the popularity of E-health is proliferating. Nowadays, enhancement on medical diagnosis via machine learning models has been highly effective in many aspects of e-health analytics. Nevertheless, in the classic cloud-based/centralized e-health paradigms, all the data will be centrally stored on the server to facilitate model training, which inevitably incurs privacy concerns and high time delay. Distributed solutions like Decentralized Stochastic Gradient Descent (D-SGD) are proposed to provide safe and timely diagnostic results based on personal devices. However, methods like D-SGD are subject to the gradient vanishing issue and usually proceed slowly at the early training stage, thereby impeding the effectiveness and efficiency of training. In addition, existing methods are prone to learning models that are biased towards users with dense data, compromising the fairness when providing E-health analytics for minority groups. In this paper, we propose a Decentralized Block Coordinate Descent (D-BCD) learning framework that can better optimize deep neural network-based models distributed on decentralized devices for E-health analytics. Benchmarking experiments on three real-world datasets illustrate the effectiveness and practicality of our proposed D-BCD, where additional simulation study showcases the strong applicability of D-BCD in real-life E-health scenarios.


翻译:由于日益关注个人保健和这种流行病,电子保健的普及程度正在扩大。如今,通过机器学习模式加强医疗诊断在电子保健分析的许多方面都非常有效,然而,在传统的云基/集中化电子保健范式中,所有数据都将集中储存在服务器上,以便利示范培训,这不可避免地会引起隐私问题和时间的拖延。建议分散式小块梯子等传播解决方案以个人设备为基础提供安全和及时的诊断结果。然而,像D-SGD这样的方法在电子保健分析的许多方面都受到渐渐消失的问题,通常在早期培训阶段缓慢进行,从而妨碍培训的实效和效率。此外,现有的方法容易于学习模式偏向数据密集的用户,在向少数群体群体提供电子保健分析时损害公平性。在本文中,我们建议了一个分散式块梯子协调(D-BCD)学习框架,以更好地优化分散式的网络模型,在电子保健实际健康模型的分散式应用性上传播,从而在电子保健实际健康模型的三种实际应用性模型上展示我们所提出的D-C-B的虚拟性模型。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
已删除
将门创投
4+阅读 · 2018年1月19日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
已删除
将门创投
4+阅读 · 2018年1月19日
Top
微信扫码咨询专知VIP会员