Mobile applications increasingly rely on sensor data to infer user context and deliver personalized experiences. Yet the mechanisms behind this personalization remain opaque to users and researchers alike. This paper presents a sandbox system that uses sensor spoofing and persona simulation to audit and visualize how mobile apps respond to inferred behaviors. Rather than treating spoofing as adversarial, we demonstrate its use as a tool for behavioral transparency and user empowerment. Our system injects multi-sensor profiles - generated from structured, lifestyle-based personas - into Android devices in real time, enabling users to observe app responses to contexts such as high activity, location shifts, or time-of-day changes. With automated screenshot capture and GPT-4 Vision-based UI summarization, our pipeline helps document subtle personalization cues. Preliminary findings show measurable app adaptations across fitness, e-commerce, and everyday service apps such as weather and navigation. We offer this toolkit as a foundation for privacy-enhancing technologies and user-facing transparency interventions.
翻译:移动应用日益依赖传感器数据推断用户情境以提供个性化体验,然而这种个性化背后的机制对用户和研究者而言仍不透明。本文提出一种沙盒系统,通过传感器欺骗和角色模拟来审计并可视化移动应用如何响应推断出的行为。我们并非将欺骗视为对抗手段,而是将其展示为行为透明化和用户赋能的工具。该系统将基于结构化生活方式角色生成的多传感器配置文件实时注入Android设备,使用户能够观察应用对高活动量、位置变化或时间变化等情境的响应。通过自动化屏幕截图捕获和基于GPT-4 Vision的用户界面摘要生成,我们的流程有助于记录细微的个性化线索。初步研究结果表明,在健身、电子商务及天气、导航等日常服务类应用中均存在可量化的应用适配行为。我们将此工具包作为隐私增强技术和面向用户的透明化干预措施的基础。