Designing dynamic algorithms against an adaptive adversary whose performance match the ones assuming an oblivious adversary is a major research program in the field of dynamic graph algorithms. One of the prominent examples whose oblivious-vs-adaptive gap remains maximally large is the \emph{fully dynamic spanner} problem; there exist algorithms assuming an oblivious adversary with near-optimal size-stretch trade-off using only $\operatorname{polylog}(n)$ update time [Baswana, Khurana, and Sarkar TALG'12; Forster and Goranci STOC'19; Bernstein, Forster, and Henzinger SODA'20], while against an adaptive adversary, even when we allow infinite time and only count recourse (i.e. the number of edge changes per update in the maintained spanner), all previous algorithms with stretch at most $\log^{5}(n)$ require at least $\Omega(n)$ amortized recourse [Ausiello, Franciosa, and Italiano ESA'05]. In this paper, we completely close this gap with respect to recourse by showing algorithms against an adaptive adversary with near-optimal size-stretch trade-off and recourse. More precisely, for any $k\ge1$, our algorithm maintains a $(2k-1)$-spanner of size $O(n^{1+1/k}\log n)$ with $O(\log n)$ amortized recourse, which is optimal in all parameters up to a $O(\log n)$ factor. As a step toward algorithms with small update time (not just recourse), we show another algorithm that maintains a $3$-spanner of size $\tilde O(n^{1.5})$ with $\operatorname{polylog}(n)$ amortized recourse \emph{and} simultaneously $\tilde O(\sqrt{n})$ worst-case update time.
翻译:设计动态算法以对抗适应性对手,其性能与假定的明显对手相符。 动态图形算法领域的主要研究程序。 其中突出的例子之一,其明显反适应性差距仍然最大, 问题在于: emph{ 完全动态的光栅 问题; 存在一种假设一种与近最佳尺寸的近最佳尺寸牵引交易的模糊对手 ; 仅使用$\opatorname{polylog} (n) 更新时间 [Baswana, Khurana, 和Sarkartar TALG'12; Forster and Goranci STOC'19; Bernstein, Forster, 和Henningger SODADAR20], 而对于适应性对手来说, 即使我们允许无限的时间和只计算追索权(, 也就是说, 每更新的边缘变化数最多为$ log_ 5} (n) $ (n) 最坏的前算法要求至少为 $ (n) 美元 美元 美元 和 美元 Amortirealtial latial latial lado) 更新[Ax] lax] a latial lax] a lax a lax a lax a lax ax ax