Designing dynamic algorithms against an adaptive adversary whose performance match the ones assuming an oblivious adversary is a major research program in the field of dynamic graph algorithms. One of the prominent examples whose oblivious-vs-adaptive gap remains maximally large is the \emph{fully dynamic spanner} problem; there exist algorithms assuming an oblivious adversary with near-optimal size-stretch trade-off using only $\operatorname{polylog}(n)$ update time [Baswana, Khurana, and Sarkar TALG'12; Forster and Goranci STOC'19; Bernstein, Forster, and Henzinger SODA'20], while against an adaptive adversary, even when we allow infinite time and only count recourse (i.e. the number of edge changes per update in the maintained spanner), all previous algorithms with stretch at most $\log^{5}(n)$ require at least $\Omega(n)$ amortized recourse [Ausiello, Franciosa, and Italiano ESA'05]. In this paper, we completely close this gap with respect to recourse by showing algorithms against an adaptive adversary with near-optimal size-stretch trade-off and recourse. More precisely, for any $k\ge1$, our algorithm maintains a $(2k-1)$-spanner of size $O(n^{1+1/k}\log n)$ with $O(\log n)$ amortized recourse, which is optimal in all parameters up to a $O(\log n)$ factor. As a step toward algorithms with small update time (not just recourse), we show another algorithm that maintains a $3$-spanner of size $\tilde O(n^{1.5})$ with $\operatorname{polylog}(n)$ amortized recourse \emph{and} simultaneously $\tilde O(\sqrt{n})$ worst-case update time.


翻译:设计动态算法以对抗适应性对手,其性能与假定的明显对手相符。 动态图形算法领域的主要研究程序。 其中突出的例子之一,其明显反适应性差距仍然最大, 问题在于: emph{ 完全动态的光栅 问题; 存在一种假设一种与近最佳尺寸的近最佳尺寸牵引交易的模糊对手 ; 仅使用$\opatorname{polylog} (n) 更新时间 [Baswana, Khurana, 和Sarkartar TALG'12; Forster and Goranci STOC'19; Bernstein, Forster, 和Henningger SODADAR20], 而对于适应性对手来说, 即使我们允许无限的时间和只计算追索权(, 也就是说, 每更新的边缘变化数最多为$ log_ 5} (n) $ (n) 最坏的前算法要求至少为 $ (n) 美元 美元 美元 和 美元 Amortirealtial latial latial lado) 更新[Ax] lax] a latial lax] a lax a lax a lax a lax ax ax

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员