A line of work initiated by Fortnow in 1997 has proven model-independent time-space lower bounds for the $\mathsf{SAT}$ problem and related problems within the polynomial-time hierarchy. For example, for the $\mathsf{SAT}$ problem, the state-of-the-art is that the problem cannot be solved by random-access machines in $n^c$ time and $n^{o(1)}$ space simultaneously for $c < 2\cos(\frac{\pi}{7}) \approx 1.801$. We extend this lower bound approach to the quantum and randomized domains. Combining Grover's algorithm with components from $\mathsf{SAT}$ time-space lower bounds, we show that there are problems verifiable in $O(n)$ time with quantum Merlin-Arthur protocols that cannot be solved in $n^c$ time and $n^{o(1)}$ space simultaneously for $c < \frac{3+\sqrt{3}}{2} \approx 2.366$, a super-quadratic time lower bound. This result and the prior work on $\mathsf{SAT}$ can both be viewed as consequences of a more general formula for time lower bounds against small-space algorithms, whose asymptotics we study in full. We also show lower bounds against randomized algorithms: there are problems verifiable in $O(n)$ time with (classical) Merlin-Arthur protocols that cannot be solved in $n^c$ randomized time and $n^{o(1)}$ space simultaneously for $c < 1.465$, improving a result of Diehl. For quantum Merlin-Arthur protocols, the lower bound in this setting can be improved to $c < 1.5$.
翻译:Fortnow 于1997年启动的一行工程证明,对于 $\ mathsfsf{SAT} 问题和多式时间结构中的相关问题, 美元( mathsfsf{SAT} 美元) 的问题无法通过随机访问机器解决, 美元( c) 美元( 美元) 和 美元( o) (美元) 时间( 2\ co) (flac) / filc (pi) ) 美元( approx 1. 801美元) 。 我们将这种较低约束方法扩大到数量和随机约束域中的问题。 例如, 对于美元( maths) 美元( SAT) 时间( 美元) 美元( 美元) 和 美元( 美元) 美元( 美元) ( 美元) 协议( 美元) ( 美元( freco) ) 协议( ) ( 美元) 美元( 美元) ( 美元) ( 美元( morec) (rc) (rorc) (rorc) (c) (rorc) (rorx) (rus) (c) (nqr) (rock) (r) (n) (n) (n) (n) (n) (n) (n) (n) (n) (n) (n) (n) (n) (n) (n) (c) (n) (c) (n) (n) (n) (n) (n) (r) (r) (r) (n) (n) (n) (n) (n) (n) (c) (n) (r) (r) (r) (r) (r(r) (r) (r) (r) (r) (r) (r) (r(r(r(r) (r(r(r(r(r(r(r)))))))))))) (r(r(r(r(r(r(r(r(r(r(r))))))))))))))) (r(r(r(r(r(r(r(r(r(r(r(r))))))