The segmentation and analysis of coronary arteries from intravascular optical coherence tomography (IVOCT) is an important aspect of diagnosing and managing coronary artery disease. Current image processing methods are hindered by the time needed to generate expert-labelled datasets and the potential for bias during the analysis. Therefore, automated, robust, unbiased and timely geometry extraction from IVOCT, using image processing, would be beneficial to clinicians. With clinical application in mind, we aim to develop a model with a small memory footprint that is fast at inference time without sacrificing segmentation quality. Using a large IVOCT dataset of 12,011 expert-labelled images we construct a new deep learning method based on capsules which automatically produces lumen segmentations. Our dataset contains images with both blood and light artefacts (22.8%), as well as metallic (23.1%) and bioresorbable stents (2.5%). We split the dataset into a training (70%), validation (20%) and test (10%) set and rigorously investigate design variations with respect to upsampling regimes and input selection. We show that our developments lead to a model, DeepCap, that is on par with state-of-the-art machine learning methods in terms of segmentation quality and robustness, while using as little as 12% of the parameters. This enables DeepCap to have per image inference times up to 70% faster on GPU and up to 95% faster on CPU compared to other state-of-the-art models. DeepCap is a robust automated segmentation tool that can aid clinicians to extract unbiased geometrical data from IVOCT.


翻译:从血管内光学一致性透析法(IVOCT)对冠动脉进行分解和分析,是诊断和管理冠动脉疾病的一个重要方面。当前图像处理方法由于生成专家标签数据集所需的时间以及分析过程中偏差的可能性而受阻。因此,通过图像处理,自动、稳健、公正和及时地从 IVOCT 中抽取心血管动脉,将有益于临床医生。在临床应用中,我们的目标是开发一个具有小缩小记忆足迹的模型,该模型在发酵时速度很快,不会牺牲分解质量。我们使用一个12 011个专家标签图像的大型 IVOCT数据集,我们根据胶囊建立一个新的深度学习方法,自动生成润滑性断层。我们的数据集包含血液和光制品的图像(22.8%),以及金属(23.1%)和生物可腐蚀性静脉冲(2.5%),我们把数据分成一个培训(70 %)、验证(20 %)和测试(10 %),在深度解析器质量部分上设置并严格调查设计模型的深度变异性模型,在深度系统中和机器输入选择中,我们展示了精度的精度(C列),我们展示了精度的精度的精度数据。我们用精度的精度的精度(C)将显示的精度数据显示的精度数据显示的精度比的精度比的精度数据从12级)比的精度的精度数据到精度,我们显示的精度的精度的精度的精度数据显示的精度的精度,显示的精度比。

0
下载
关闭预览

相关内容

专知会员服务
82+阅读 · 2020年9月27日
专知会员服务
109+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员