Recent work by Jacot et al. (2018) has showed that training a neural network of any kind with gradient descent in parameter space is equivalent to kernel gradient descent in function space with respect to the Neural Tangent Kernel (NTK). Lee et al. (2019) built on this result to show that the output of a neural network trained using full batch gradient descent can be approximated by a linear model for wide networks. In parallel, a recent line of studies (Schoenholz et al. (2017), Hayou et al. (2019)) suggested that a special initialization known as the Edge of Chaos leads to good performance. In this paper, we bridge the gap between these two concepts and show the impact of the initialization and the activation function on the NTK as the network depth becomes large. We provide experiments illustrating our theoretical results.


翻译:Jacot等人(2018年)最近的工作表明,在参数空间中,对具有梯度下行的任何类型的神经网络进行培训,相当于神经唐氏内核(NTK)在功能空间中的内核梯度下行。 Lee等人(2019年)以这一结果为基础,表明利用整批梯度下行进行训练的神经网络的产出可以用宽网络的线性模型近似。与此同时,最近的一系列研究(Schoenholz等人(2017年)、Hayou等人(2019年))表明,被称为Chaos Edge的特种初始化可以带来良好的表现。在本文件中,我们弥合这两个概念之间的差距,并表明随着网络深度的扩大,初始化和启动功能对NTK的影响。我们提供实验,说明我们的理论结果。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
Top
微信扫码咨询专知VIP会员