Crime prediction is crucial to criminal justice decision makers and efforts to prevent crime. The paper evaluates the explanatory and predictive value of human activity patterns derived from taxi trip, Twitter and Foursquare data. Analysis of a six-month period of crime data for New York City shows that these data sources improve predictive accuracy for property crime by 19% compared to using only demographic data. This effect is strongest when the novel features are used together, yielding new insights into crime prediction. Notably and in line with social disorganization theory, the novel features cannot improve predictions for violent crimes.
翻译:该文件评估了从出租车旅行、Twitter和Foursquare数据中得出的人类活动模式的解释和预测价值,对纽约市6个月的犯罪数据的分析表明,与仅使用人口数据相比,这些数据来源提高了财产犯罪的预测准确性19%,而仅使用人口数据,这一影响最大,因为新特点被结合使用,对犯罪预测产生了新的洞察力。值得注意的是,根据社会不组织理论,这些新特点无法改进暴力犯罪的预测。