Most of the existing 3D human pose estimation approaches mainly focus on predicting 3D positional relationships between the root joint and other human joints (local motion) instead of the overall trajectory of the human body (global motion). Despite the great progress achieved by these approaches, they are not robust to global motion, and lack the ability to accurately predict local motion with a small movement range. To alleviate these two problems, we propose a relative information encoding method that yields positional and temporal enhanced representations. Firstly, we encode positional information by utilizing relative coordinates of 2D poses to enhance the consistency between the input and output distribution. The same posture with different absolute 2D positions can be mapped to a common representation. It is beneficial to resist the interference of global motion on the prediction results. Second, we encode temporal information by establishing the connection between the current pose and other poses of the same person within a period of time. More attention will be paid to the movement changes before and after the current pose, resulting in better prediction performance on local motion with a small movement range. The ablation studies validate the effectiveness of the proposed relative information encoding method. Besides, we introduce a multi-stage optimization method to the whole framework to further exploit the positional and temporal enhanced representations. Our method outperforms state-of-the-art methods on two public datasets. Code is available at https://github.com/paTRICK-swk/Pose3D-RIE.
翻译:现有的3D人类构成估计方法大多主要侧重于预测根联和其他人类联合(本地运动)之间的3D定位关系,而不是人体整体轨迹(全球运动)。尽管这些方法取得了巨大进展,但它们对于全球运动并不强大,缺乏以小运动范围准确预测当地运动的能力。为了缓解这两个问题,我们提议了一个相对信息编码方法,以产生定位和时间增强的表示方式。首先,我们利用2D相对坐标将定位信息编码,以加强投入和产出分布的一致性。不同的绝对2D位置的同一态势可以被映射为共同的表示方式。这有利于抵制全球运动对预测结果的干扰。第二,我们通过在一段时间内确定当前结构和同一人的其他构成之间的联系来编码时间信息。我们将更多地关注当前构成前后的移动变化,从而以小运动范围更好地预测当地运动的绩效。 模拟研究证实拟议的相对信息编码方法的有效性。此外,我们采用多阶段/RIF3 的调整方法,以利用我们现有的全州数据格式。