A wide variety of deep learning techniques from style transfer to multitask learning rely on training affine transformations of features. Most prominent among these is the popular feature normalization technique BatchNorm, which normalizes activations and then subsequently applies a learned affine transform. In this paper, we aim to understand the role and expressive power of affine parameters used to transform features in this way. To isolate the contribution of these parameters from that of the learned features they transform, we investigate the performance achieved when training only these parameters in BatchNorm and freezing all weights at their random initializations. Doing so leads to surprisingly high performance considering the significant limitations that this style of training imposes. For example, sufficiently deep ResNets reach 82% (CIFAR-10) and 32% (ImageNet, top-5) accuracy in this configuration, far higher than when training an equivalent number of randomly chosen parameters elsewhere in the network. BatchNorm achieves this performance in part by naturally learning to disable around a third of the random features. Not only do these results highlight the expressive power of affine parameters in deep learning, but - in a broader sense - they characterize the expressive power of neural networks constructed simply by shifting and rescaling random features.


翻译:从风格传输到多任务学习的多种深层次学习技巧都依赖于对各种特征的训练,其中最突出的是流行的地貌正常化技术BatchNorm, 使激活正常化, 并随后应用学习的方形变换。 在本文中, 我们的目标是理解用于以这种方式转换特征的方形参数的作用和表达力。 为了将这些参数的贡献与它们所学特性的变异区分开来, 我们调查这些参数仅通过在BatchNorm中培训这些参数和在随机初始化时冻结所有重量而实现的性能。 考虑到这种培训方式带来的重大限制, 最突出的就是惊人的性能。 例如, 足够深的ResNet达到82% (CIFAR- 10) 和32% (ImagiNet, 顶级 5) 的这种配置的精度, 远高于在网络其他地方培训同等数量的随机选择参数时的精度。 BatchNorm通过自然学习约三分之一的随机特性来达到这一性能。 这些结果不仅突出深层次学习的直系参数的显性力量, 并且从更广义的感应变的内感性地描述它们。

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
47+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
107+阅读 · 2020年5月15日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关VIP内容
专知会员服务
38+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
47+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
107+阅读 · 2020年5月15日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员