Towards the network innovation, the Beyond Five-Generation (B5G) networks envision the use of machine learning (ML) methods to predict the network conditions and performance indicators in order to best make decisions and allocate resources. In this paper, we propose a new ML approach to accomplish predictions in B5G networks. Instead of handling the time-series in the network domain of values, we transform them into image thus allowing to apply advanced ML methods of Computer Vision field to reach better predictions in B5G networks. Particularly, we analyze different techniques to transform time-series of network measures into image representation, e.g., Recurrence Plots, Markov Transition Fields, and Gramian Angular Fields. Then, we apply deep neural networks with convolutional layers to predict different 5G radio signal quality indicators. When comparing with other ML-based solutions, experimental results from 5G transmission datasets showed the feasibility and small prediction errors of the proposed approach.
翻译:为了实现网络创新,“超越五代”网络设想使用机器学习(ML)方法来预测网络条件和业绩指标,以便作出最佳决策和分配资源。在本文件中,我们提出一种新的ML方法,以完成B5G网络的预测。我们没有处理网络价值域的时间序列,而是将其转化为图像,从而能够应用先进的ML计算机视野域方法,在B5G网络中实现更好的预测。特别是,我们分析将网络计量的时间序列转化为图像显示的不同技术,例如Recurence Plots、Markov Transport Fields和Gramian Aformat Fields。然后,我们运用具有革命层的深神经网络来预测不同的5G无线电信号质量指标。与其他基于ML的解决方案相比,5G传输数据集的实验结果显示了拟议方法的可行性和小的预测错误。