The modern day semantic applications store data as Resource Description Framework (RDF) data.Due to Proliferation of RDF Data, the efficient management of huge RDF data has become essential. A number of approaches pertaining to both relational and graph-based have been devised to handle this huge data. As the relational approach suffers from query joins, we propose a semantic aware graph based partitioning method. The partitioned fragments are further allocated in a load balanced way. For efficient query processing, partial replication is implemented. It reduces Inter node Communication thereby accelerating queries on distributed RDF Graph. This approach has been demonstrated in two phases partitioning and Distribution of Linked Observation Data (LOD). The time complexity for partitioning and distribution of Load Balanced Semantic Aware RDF Graph (LBSD) is O(n) where n is the number of triples which is demonstrated by linear increment in algorithm execution time (AET) for LOD data scaled from 1x to 5x. LBSD has been found to behave well till 4x. LBSD is compared with the state of the art relational and graph-based partitioning techniques. LBSD records 71% QET gain when averaged over all the four query types. For most frequent query types, Linear and Star, on an average 65% QET gain is recorded over original configuration for scaling experiments. The optimal replication level has been found to be 12% of original data.
翻译:现代语义应用程序存储数据为资源描述框架(RDF) 数据 。 借助于 RDF 数据的扩散, 快速管理巨大的 RDF 数据已经变得至关重要。 已经设计了一些与关系和图表相关的方法来处理这个巨大的数据。 由于连接方法存在查询连接, 我们建议使用一种以语义意识图形为基础的分隔法。 分割的碎片进一步以负负平衡的方式分配。 对于高效的查询处理, 部分复制已经实施。 它减少了间节点通信, 从而加快了分布式 RDF 图的查询。 这个方法已经在两个阶段中演示了链接观测数据(LODD) 的分布和分布。 已经设计了连接观测数据(LODD) 和 图形分隔和分布方法(LBSDD) 。 在计算逻辑执行时间(AET) 的线性递增(AET) 中显示的三倍数量。 对于从1x到 5x 的LDSD 数据, 已经发现部分复制。 LBSDDD与基于图像的分布和分布式数据分布数据分布数据分布数据数据数据在4级的平均水平上, 已经记录了65 。