With the rapid increase of users of wearable cameras in recent years and of the amount of data they produce, there is a strong need for automatic retrieval and summarization techniques. This work addresses the problem of automatically summarizing egocentric photo streams captured through a wearable camera by taking an image retrieval perspective. After removing non-informative images by a new CNN-based filter, images are ranked by relevance to ensure semantic diversity and finally re-ranked by a novelty criterion to reduce redundancy. To assess the results, a new evaluation metric is proposed which takes into account the non-uniqueness of the solution. Experimental results applied on a database of 7,110 images from 6 different subjects and evaluated by experts gave 95.74% of experts satisfaction and a Mean Opinion Score of 4.57 out of 5.0. Source code is available at https://github.com/imatge-upc/egocentric-2017-lta
翻译:随着近年来可磨损照相机用户的迅速增加及其产生的数据数量的迅速增加,非常需要自动检索和总结技术。这项工作解决了通过可磨损相机通过图像检索角度自动通过可磨损相机捕捉的以自我为中心的照片流的问题。在通过新的CNN过滤器去除非信息化图像后,图像按相关程度排列,以确保语义多样性,并最终根据新标准重新排序,以减少冗余。为了评估结果,提出了新的评价标准,其中考虑到解决办法的非独特性。在一个由来自6个不同主题的7 110图像组成的数据库中应用的实验结果,专家对实验结果进行了评估,在5.0中,有95.74%的专家表示满意,有4.57%的专家意见中,有4.57分。资料来源代码见https://github.com/imatge-upc/egoccentic-2017-lta。