A spatial regression model framework is presented to predict growing stock volume loss due to storm Adrian which caused heavy forest damage in the upper Gail valley in Carinthia, Austria, in October 2018. Model parameters were estimated using growing stock volume measured with a terrestrial laser scanner on 62 sample plots distributed across five sub-regions. Predictor variables were derived from high resolution vegetation height measurements collected during an airborne laser scanning campaign. Non-spatial and spatial candidate models were proposed and assessed based on fit to observed data and out-of-sample prediction. Spatial Gaussian processes associated model intercepts and regression coefficients were used to capture spatial dependence. Results show a spatially-varying coefficient model, which allowed the intercept and regression coefficients to vary spatially, yielded the best fit and prediction. Two approaches were considered for prediction over blowdown areas: 1) an areal approach that viewed each blowdown as a single prediction unit indexed by its centroid; and 2) a block approach where each blowdown was partitioned into smaller prediction units to better align with sample plots' spatial support. Joint prediction was used to acknowledge spatial dependence among block units. Results demonstrated the block approach is preferable as it mitigated change-of-support issues encountered in the areal approach. Despite the small sample size, predictions for 55% of the total 564 blowdown areas, accounting for 93% of the total loss, had a coefficient of variation less than 25%. Key advantages of the proposed regression framework are the ability to quantify uncertainty in spatial covariance parameters, propagate parameter uncertainty through to prediction, and provide statistically valid prediction point and interval estimates for individual blowdowns and collections of blowdowns.


翻译:2018年10月,Adrian风暴对奥地利卡林西亚的Gail河谷造成严重的森林破坏。模型参数是使用分布在五个分区的62个抽样地块的地面激光扫描仪测量的,用在分布在五个分区的62个抽样地块上的地面激光扫描仪测量的不断增长的库存量来估计的。预测变量来自空中激光扫描运动中收集的高分辨率植被高度测量结果。非空间和空间候选模型是根据适合观察到的数据和抽样预测而提出和评估的。利用空间高斯进程相关的模型拦截和回归系数来获取空间依赖性。结果显示空间变化式的预测系数模型,允许拦截和回归系数在空间上变化,得出最佳的准确性和预测值。两种方法用于对击落区进行预测:1) 将每次击落作为单一预测单位,按其中间点进行指数指数指数指数化;2) 将每次击落分成较小型的预测单位,以更好地与样本地块的空间支持一致。联合预测用于确认各区单元单位之间的空间依赖性。结果显示拦截和回归系数的模型在空间变化中显示总能力,对25号的准确度的精确度是测量的准确度,在25度的计算中比值的精确度,在减少的计算中比较的精确度是比。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
专知会员服务
59+阅读 · 2020年3月19日
专知会员服务
158+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年8月17日
Arxiv
0+阅读 · 2021年8月16日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
专知会员服务
59+阅读 · 2020年3月19日
专知会员服务
158+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员