In the context of urban autonomous driving, imitation learning-based methods have shown remarkable effectiveness, with a typical practice to minimize the discrepancy between expert driving logs and predictive decision sequences. As expert driving logs natively contain future short-term decisions with respect to events, such as sudden obstacles or rapidly changing traffic signals. We believe that unpredictable future events and corresponding expert reactions can introduce reasoning disturbances, negatively affecting the convergence efficiency of planning models. At the same time, long-term decision information, such as maintaining a reference lane or avoiding stationary obstacles, is essential for guiding short-term decisions. Our preliminary experiments on shortening the planning horizon show a rise-and-fall trend in driving performance, supporting these hypotheses. Based on these insights, we present PlanScope, a sequential-decision-learning framework with novel techniques for separating short-term and long-term decisions in decision logs. To identify and extract each decision component, the Wavelet Transform on trajectory profiles is proposed. After that, to enhance the detail-generating ability of Neural Networks, extra Detail Decoders are proposed. Finally, to enable in-scope decision supervision across detail levels, Multi-Scope Supervision strategies are adopted during training. The proposed methods, especially the time-dependent normalization, outperform baseline models in closed-loop evaluations on the nuPlan dataset, offering a plug-and-play solution to enhance existing planning models.


翻译:在城市自动驾驶领域,基于模仿学习的方法已展现出显著成效,其典型实践是缩小专家驾驶记录与预测决策序列之间的差异。由于专家驾驶记录天然包含针对突发事件的未来短期决策,例如突然出现的障碍物或快速变化的交通信号。我们认为不可预测的未来事件及相应的专家反应会引入推理干扰,对规划模型的收敛效率产生负面影响。同时,长期决策信息(如保持参考车道或避开静止障碍物)对于指导短期决策至关重要。我们通过缩短规划时域的初步实验发现驾驶性能呈现先升后降的趋势,这支持了上述假设。基于这些见解,我们提出了PlanScope——一种具有创新技术的序列决策学习框架,能够分离决策记录中的短期与长期决策。为识别并提取各决策分量,我们提出了轨迹剖面的小波变换方法。随后,为增强神经网络的细节生成能力,引入了额外的细节解码器。最后,为实现跨细节层级的范围内决策监督,在训练过程中采用了多范围监督策略。所提出的方法(特别是时间依赖归一化技术)在nuPlan数据集的闭环评估中超越了基线模型,为增强现有规划模型提供了一种即插即用的解决方案。

0
下载
关闭预览

相关内容

数学上,序列是被排成一列的对象(或事件);这样每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2013年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员